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Abstract. In this paper, we focus on the challenging cross-view action
recognition problem. The key to this problem is to find the correspon-
dence between source and target views, which is realized in two stages
in this paper. Firstly, we construct a Dual-Codebook for the two views,
which is composed of two codebooks corresponding to source and target
views, respectively. Each codeword in one codebook has a corresponding
codeword in the other codebook, which is different from traditional meth-
ods that implement independent codebooks in the two views. We propose
an effective co-clustering algorithm based on semi-nonnegative matrix
factorization to derive the Dual-Codebook. With the Dual-Codebook,
an action can be represented based on Bag-of-Dual-Codes (BoDC) no
matter it is in the source view or in the target view. Therefore, the
Dual-Codebook establishes a sort of codebook-to-codebook correspon-
dence, which is the foundation for the second stage. In the second stage,
we observe that, although the appearance of action samples will change
significantly with viewpoints, the temporal relationship between atom
actions within an action should be stable across views. Therefore, we
further propose a hierarchical transfer framework to obtain the feature-
to-feature correspondence at atom-level between source and target views.
The framework is based on a temporal structure that can effectively cap-
ture the temporal relationship between atom actions within an action.
It performs transfer at atom levels of multiple timescales, while most
existing methods only perform video-level transfer. We carry out a se-
ries of experiments on the IXMAS dataset. The results demonstrate that
our method obtained superior performance compared to state-of-the-art
approaches.

1 Introduction

Recently, action recognition has gained much attention in computer vision due to
its extensive applications in video surveillance [26], human-machine interaction,
medical assistance for elders [1, 25], etc. Previous work has proposed some popu-
lar features for recognizing actions, such as space-time point features [5, 14, 19],
shape features [3, 17, 18, 32], optical-flow features [17, 6]. These features have led
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to remarkable action recognition performance for typical scenarios where there
are only limited viewpoint variations. However, when the view point changes sig-
nificantly, traditional approaches for action recognition would suffer from serious
drop of performance [10, 11].

Several approaches have been proposed to address action recognition across
views. One category of approaches rely on 3D reconstruction [27, 30, 21, 9]. Some
other approaches directly use 2D image or geometric constraints across different
views [31, 22, 23, 8, 16]. Besides, temporal self-similarities have also been exploit-
ed for view-invariant feature extraction [13, 12].

Recently, some works seek to transfer action model from the source view to
the target view, and have received satisfactory results. Farhadi et al. [7] proposed
to use Maximum Margin Clustering to build split-based features for frames.
Then, they transfer them among corresponding frames across different views.
Liu et al. [20] constructed “bilingual words” by using the co-occurrence of visual
words from source and target views. By representing the videos as a bag of bilin-
gual words (BoBW), they can transfer the action model at the video-level across
different views. Zheng et al. [34] proposed to build a transferable dictionary pair
by forcing the videos of the same action to have the same sparse coefficients
across views. These approaches are attractive, for they have little dependence
on the 3D model reconstruction of actions, reliable body joints detection and
tracking, and the geometric information across different views.

However, existing approaches generally implement codebooks separately trained
in the source and target views, which cannot guarantee reliable correspondence
between visual words. This will degrade the performance of these approaches on
transferring action models from the source view to the target view. In this pa-
per, we propose to construct a Dual-Codebook for the source and target views.
Unlike traditional codebook learning approaches, we model the construction of
Dual-Codebook as a co-clustering problem and propose an effective algorithm to
solve it. Our Dual-Codebook consists of two codebooks, one for each of the two
views. Since it is obtained by co-clustering, not isolated clustering in source and
target views, each codeword in one codebook has a corresponding codeword in
the other codebook. This means that our Dual-Codebook contains basic view-
correspondence, i.e., a codebook-to-codebook correspondence across two views.
To our knowledge, this has never been explored before.

Furthermore, existing approaches usually transfer action models at the video-
level, ignoring the sequential composition of atom actions during the execution of
the full action. Such a strategy will not be discriminative enough when multiple
actions contain similar atom actions following different occurrence orders, such
as sit down and get up. To resolve this problem, we propose a novel hierarchi-
cal framework for transferring action models across different views. Specifically,
we divide action videos into several segments along the time dimension at each
level of this framework. Each segment contains an atom action within a short
time interval. Then, we enforce similar sparse representations for each pair of
corresponding segments from the source and target views by learning a trans-
ferable pairwise dictionary. The inputs of the learning procedure are the Bag-of-
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Dual-Codes (BoDC) of these segments. This is different from implementations
of existing dictionary learning strategies, which are usually based on separately
generated codebooks. The representation generated in this way is more robust
to view changes, as demonstrated experimentally.

This paper presents the following contributions.
1. A Dual-Codebook is constructed for source and target views. We pro-

pose an effective co-clustering algorithm to learn the Dual-Codebook. The Dual-
Codebook achieves the codebook-to-codebook correspondence across different
views.

2. We propose a hierarchical transfer framework based on Dual-Codebook.
The framework transfers the action model at the atom-level on different timescales
and achieves the feature-to-feature correspondence across different views.

3. We evaluate our method on the IXMAS dataset, and demonstrate the
superiority of our method compared to state-of-the-art methods.

2 Dual-Codebook Construction

In this section, we firstly model the process of learning Dual-Codebook as a
co-clustering problem. Then, we propose an iterative algorithm to solve this
problem effectively, which is based on semi-nonnegative matrix factorization.

We consider two kinds of actions: shared actions and orphan actions as in
[7]. Shared actions are observed in both source and target views, and orphan
actions are only observed in the source view during training. We only use shared
actions to construct Dual-Codebook in the training phase, and use the samples
of orphan action in the target view as test samples in the classification phase.
This setting means that we do not use the correspondence across pairwise views
for the orphan action.

2.1 Problem Formulation

The classical k-means algorithm aims to minimize the representation error of the
given set of data points, and can be modeled as follows. Let Y ∈ Rd×N be the
set of N d-dimensional data points. Then, the codebook of K-cluster centroids
C ∈ Rd×K can be obtained by solving the following optimization problem

{C∗, X∗} = argmin
C,X

∥Y − CX∥2F (1)

where X ∈ RK×N is the cluster indicators of the N data points. Here, ∥.∥F is
the Frobenius norm of a matrix. Since C contains both positive and negative
entries, and the entries in X should be nonnegative, if we allow the entries in
X to range over (0, 1), the k-means clustering can be seen as semi-nonnegative
matrix factorization [4].

Existing methods for cross-view action recognition usually implement code-
books obtained by k-means clustering separately in source and target views.
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As a result, these codebooks cannot guarantee correspondence with each oth-
er. We propose to construct a Dual-Codebook across two different views, which
is composed of two codebooks, one in each view. Each pair of codewords that
hold the same column number in these two codebooks is a pair of corresponding
codewords across source and target views. The codewords in the Dual-Codebook
are generated while maintaining pairwise associations across two views, which is
very different from traditional codebook learning approaches.

To establish the association, we reduce the distance between the histograms
of each pair of corresponding frames in the source and target views. We argue
that, if two codewords from these two views correspond to each other, their
frequency in the corresponding action videos should be close. Hence, by reducing
the distance between the corresponding histograms from the source and target
views, we can obtain corresponding codewords across the two views.

Suppose there are Ns, Nt feature points extracted from the videos of shared
actions in source and target views, respectively. Let Ys ∈ Rd×Ns , Yt ∈ Rd×Nt

denote the sets of these feature points in source and target views. The Dual-
Codebook {Cs, Ct} , where Cs, Ct ∈ Rd×K correspond to source and target
views, respectively, can be learned by minimizing the following objective function

f(Cs, Ct, Xs, Xt) = α ∥XsAs −XtAt∥2F + ∥Ys − CsXs∥2F + ∥Yt − CtXt∥2F
s.t. Xs ≥ 0K×Ns , Xt ≥ 0K×Nt

(2)

where Xs ∈ RK×Ns , Xt ∈ RK×Nt denote the cluster indicators of the feature
points in source and target views, respectively. α is a positive constant. Besides,
As ∈ {0, 1}Ns×T , T is the total number of frames in source and target views.
As(i, j) = 1 indicates that the i-th feature point is located in the j-th frame in
the source view. The matrix At ∈ {0, 1}Nt×T is defined similarly in the target
view. Thus, XsAs, XtAt denote the histograms of all frames in source and target
views, respectively.

The first term of Eq. (2) reflects the difference of the histograms of all corre-
sponding frames in source and target views. The second and third terms of Eq.
(2) are the representation errors of Ys and Yt, respectively.

It should be noted that Eq. (2) can be seen as a co-clustering problem,
because codebooks Cs, Ct are generated simultaneously and the clustering on
one of them induces that of the other, maintaining pairwise associations across
source and target views. Specifically, for i = 1, 2, . . . ,K, the i-th columns of Cs

and Ct are two codewords that correspond to each other.

2.2 Optimization

Since Cs, Ct contain both positive and negative entries, and the entries in Xs, Xt

are nonnegative, Eq. (2) can be seen as a constrained joint semi-nonnegative ma-
trix factorization. Inspired by [4], we propose an iterative algorithm to solve the
problem as follows. LetXs = [xs1, xs2, . . . , xsNs ] ∈ RK×Ns ,Xt = [xt1, xt2, . . . , xtNt ] ∈
RK×Nt .

Step 1: Initialize Xs, Xt.
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We first apply k-means clustering separately in the source and target views to
obtain visual words in the two views. Then, we use these visual words as vertexes
to build a bipartite graph for matching the visual words preliminarily across the
two views. Afterwards, we can initialize Xs, Xt according to the matching result
of visual words.

Step 2: Update Cs, Ct while fixing Xs, Xt as follows

Cs = YsX
T
s (XsX

T
s )

−1
(3)

Ct = YtX
T
t (XtX

T
t )

−1
(4)

Equations (3) and (4) are obtained by letting the partial derivatives of Eq. (2)
with respect to Cs, Ct be zero, respectively.

Step 3: Update Xs column by column using Eq. (5) while fixing Xt, for
m = 1, 2, . . . ,K,

x
(t+1)
si(m) = x

(t)
si(m)

√√√√√√α
[
X

(t)
t (AtAT

s )•i

]
(m)

+
[
(CT

s Cs)−x
(t)
si

]
(m)

+
[
(CT

s Ys)
+
•i
]
(m)

α [X∗
s (AsAT

s )•i](m) +
[
(CT

s Cs)+x
(t)
si

]
(m)

+
[
(CT

s Ys)
−
•i
]
(m)

(5)
To obtain Eq. (5), we use the auxiliary function approach as in [15] to find the
auxiliary function of Eq. (2), which is the upper bound of Eq. (2) and is a convex
function in Xs. Then, to find the minima of this auxiliary function, we set its

partial derivative with respect to Xs to be zero. In Eq. (5), x
(t+1)
si(m) is the updated

value of the m-th entry in the i-th column of Xs at iteration t+1. (·)•i denotes
the i-th column of the matrix in the parentheses. [·](m) is the m-th entry of the
vector in the brackets. The matrix X∗

s is the result of Xs where the first i − 1
columns have been updated in the iteration t+1. So we can see that, the updated
result of the i-th column of Xs is related to the updated results of the first i− 1
columns of Xs

Besides, in Eq. (5),

(CT
s Cs)

+
=

1

2
[
∣∣(CT

s Cs)
∣∣+ (CT

s Cs)] (6)

(CT
s Cs)

−
=

1

2
[
∣∣(CT

s Cs)
∣∣− (CT

s Cs)] (7)

where (CT
s Cs)

+
and (CT

s Cs)
−

are the positive and negative parts of matrix
CT

s Cs, respectively. All superscripts “+” and “−” in Eq. (5) are defined similarly.
Note that X∗

s (AsA
T
s )•i in Eq. (5) corresponds to the histogram of the frame

that contains the i-th feature point in the source view. And X
(t)
t (AtA

T
s )•i in Eq.

(5) represents the histogram of a frame in the target view while the correspond-
ing frame in the source view contains the i-th feature point. Consequently, the
iterative process of updating each column of Xs (i.e., the cluster indicator of
each feature point in the source view) is constrained by the interaction between
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the histograms of corresponding frames in source and target views. This means
that Eq. (5) maintains the pairwise associations across source and target views.

Step 4: Update Xt column by column using Eq. (8) while fixing Xs, for
m = 1, 2, . . . ,K,

x
(t+1)
ti(m) = x

(t)
ti(m)

√√√√√√α
[
X

(t+1)
s (AsAT

t )•i

]
(m)

+
[
(CT

t Ct)−x
(t)
ti

]
(m)

+
[
(CT

t Yt)
+
•i
]
(m)

α
[
X∗

t (AtAT
t )•i

]
(m)

+
[
(CT

t Ct)+x
(t)
ti

]
(m)

+
[
(CT

t Yt)
−
•i
]
(m)

(8)
Eq. (8) is obtained in a similar way as Eq. (5).

We iteratively perform Step 1 to 4 until Eq. (2) converges. The convergence
proof of the above algorithm can be found in the supplementary material. Af-
ter the Dual-Codebook is obtained, we can replace traditional Bag-of-Visual-
Words (BoVW) with Bag-of-Dual-Codes (BoDC), which contains the codebook-
to-codebook correspondence across views.

3 Hierarchical Temporal-Structure Transfer

In this section, we firstly propose the action temporal-structure model that can
effectively capture the information about atom actions within a full action. Then,
based on this model, we propose the hierarchical temporal-structure transfer
framework.

3.1 Action Temporal-Structure Modeling

The execution of an action is typically considered to be composed of several atom
actions. Each of these atom actions corresponds to a short time interval and their
sequential order forms the temporal pattern of an action. Thus, the categories
and sequential composition of the atom actions can reflect the nature of an
action [1]. More specifically, both the categories and sequential order of the atom
actions will not change with viewpoints. For instance, the action “sit down” can
be seen as an atom-action sequence “stand-stoop-sit” in whatever viewpoint it is
observed. Consequently, we consider that these significant invariabilities should
be fully utilized for solving the cross-view action recognition problem. Before
doing this, it is necessary to construct a model that can effectively capture the
atom actions and the temporal relationship among them within an action.

To exploit the temporal information, we divide actions into several segments
along the time dimension. Each segment can be assumed to contain an atom
action, which can be described by a BoDC. For example, when three segments
are implemented, the action “sit down” can be divided into “stand”, “stoop”, and
“sit”. While for the action “stand up”, the atom-action-sequence “sit”, “stoop”,
and “stand” will be obtained instead. In this way, the sequential orders of the
segment-BoDCs can be used to distinguish these two actions effectively.
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Modeling Details: Based on the above analysis, we consider multiple timescales
to construct the action temporal-structure model. For action videos that are ap-
proximately aligned in time dimension, at the l-th scale, l = 1, 2, . . . , L, we divide
an action into 2l−1 segments of equal duration along the time dimension. As a
result, an action can be modeled as a sequence of increasingly finer segments at
levels 1, 2, . . . , L. Based on this action temporal-structure model, we propose a
novel hierarchical transfer framework in Sec. 3.2.

3.2 Hierarchical Transfer Framework

In this section, we propose a hierarchical transfer framework that exploits the
previous temporal-structure model. In each level of proposed transfer framework,
only the shared actions are used to construct the transferable relationship across
different views, while orphan actions are utilized to test the effectiveness of this
relationship.

In the training stage, we divide two action videos of the same class from
source and target views into several segments as in Sec. 3.1. Then we construct
the common representation of corresponding segments within these two videos.
The basic idea is “pairwise dictionary learning”. It has also been explored in
cross-domain face recognition [32], and in cross-view action recognition for video-
level correspondence [34].

Incorporating this basic idea into the temporal-structure model, we propose
a novel hierarchical transfer framework. As illustrated in Fig. 1, both action
videos are assumed to have a 2-level temporal structure. For each level of the
models in two views, we aim to learn a transferable pairwise dictionary based
on the Dual-Codebook. In other words, what we utilize to learn the transferable
pairwise dictionary are the BoDCs of all pairs of corresponding segments from
shared actions in the source and target views. This is different from existing
implementations of dictionary learning strategies that are based on separate-
ly generated codebooks. In this hierarchical framework, each level has its own
pairwise dictionary, i.e., {Dsi, Dti} shown in Fig. 1, such that all pairs of cor-
responding segments across source and target views are converted to similar
sparse representations, such as x11, x

′

11 in Fig. 1. Thus, these sparse representa-
tions are view-invariant, and only depend on atom actions within the segments.
This means that, the hierarchical framework is capable to transfer at the atom-
level effectively. At last, for each action video in the source and target views, we
obtain its full view-invariant sparse representation by concatenating the sparse
representations of all segments at all levels of the temporal-structure model, i.e.,

[x11, x21, x22] and
[
x

′

11, x
′

21, x
′

22

]
shown in Fig. 1.

In the following, we explain the procedure of learning a transferable pairwise
dictionary at each level. Let Bs, Bt ∈ RK×N denote the K-dimensional BoDCs
of N segments of shared actions in the source and target views, respectively.
The transferable pairwise dictionary {Ds, Dt} is learned by solving the following
optimization problem

arg min
Ds,Dt,S

{∥Bs −DsS∥22 + ∥Bt −DtS∥22}, s.t. ∀i, ∥si∥0 ≤ T0 (9)
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Fig. 1. The proposed hierarchical transfer framework, where we perform transfer at
atom-level, converting the corresponding segments to similar sparse representations.

where Ds, Dt ∈ RK×J denote, respectively, the dictionaries with J items in
the source and target views. The matrix S = [s1, s2, . . . , sN ] ∈ RJ×N denotes
the common sparse representations of Bs and Bt, which satisfies the sparsity
constraint ∥si∥0 ≤ T0. The terms ∥Bs −DsS∥22 and ∥Bt −DtS∥22 are the recon-
struction errors of source and target views, respectively.

Furthermore, by constructing B =
[
BT

s BT
t

]T
, D =

[
DT

s DT
t

]T
, we formu-

late Eq. (9) equivalently as

argmin
D,S

{∥B −DS∥22}, s.t. ∀i, ∥si∥0 ≤ T0 (10)

The K-SVD algorithm can be used to solve Eq. (10) [2].
When the transferable pairwise dictionary {Ds, Dt} is obtained, we calculate

the sparse representations of all segments (from either shared actions or orphan
actions) in source and target views by solving Eqs. (11) and (12), respectively,

Ss = argmin
Ss

{∥B∗
s −DsSs∥22}, s.t. ∀i, ∥ssi∥0 ≤ T0 (11)

St = argmin
St

{∥B∗
t −DtSt∥22}, s.t. ∀i, ∥sti∥0 ≤ T0 (12)

whereM denotes the number of all segments both in the source and target views,
Ss = [ss1, ss2, . . . , ssM ] ∈ RJ×M and St = [st1, st2, . . . , stM ] ∈ RJ×M refer to
the sparse representations of all the M segments in source and target views,
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respectively. The matrices B∗
s , B

∗
t ∈ RK×M denote the K-dimension BoDCs

of all the M segments in source and target views, respectively. Both Eq. (11)
and Eq. (12) can be efficiently solved by orthogonal matching pursuit (OMP)
algorithm [24].

In our hierarchical transfer framework, what we obtain ultimately are the
sparse representations at the atom-level of the action videos, which guarantees
that the information of all the segments as well as the temporal relationship
therein can be preserved. As a result, the invariance across different views are
fully utilized during the transfer procedure, which contributes to the feature-to-
feature correspondence at atom-level through our framework.

4 Experiments

4.1 Dataset and Experimental Setup

We use the multi-view dataset IXMAS [25] in our experiment. This dataset
contains eleven action categories, each of which is observed by five different
cameras, and is performed by twelve people for three times. We denote the five
different camera views of this dataset as C1, C2, . . . , C5 respectively.

We extract spatial-temporal interest-point-based features [5] to describe ac-
tions in each viewpoint. The protocol for calculating these features is the same
as in [34] and [20]. Specifically, while constructing the codebook, the size of our
Dual-Codebook is chosen from 50, 100, 250, and 500.

In our experiments, we observed that the 3-level temporal-structure model
obtained relatively better results than other choices. Hence, we set our action
temporal-structure model to 3-levels, and the action videos at these three levels
have one, two, and four segments respectively.

The selection strategies of the parameters in our method are as follows. At
each level of the hierarchical transfer framework, the number of dictionary atoms
is set to be the same as that of training samples. The sparsity constraint T0 is
set to 36, since each action class has 36 samples in the IXMAS dataset, and we
assume that each sample can be well represented by other samples of the same
class. Moreover, α is empirically fixed to be 1 according to the experiments.

In order to have a fair comparison to [34] and [20], we follow their leave-one-
action-class-out scheme, where each time we only consider one action category
for testing (i.e., as an orphan action). Accordingly, we utilize all other action
categories to learn the Dual-Codebook and the transferable pairwise dictionary
at each level of our transfer framework.

In the classification phase, we take all action videos in the source view as
training samples, and use the nearest-neighbor classifier to recognize the target-
view video of the orphan action.

4.2 Experimental Results

Firstly, we conduct two controlled experiments to verify the effectiveness of the
proposed framework. In the first experiment, we implement codebooks separate-
ly trained with k-means in the two views instead of Dual-Codebook, followed



10 Chengkun Zhang, Huicheng Zheng, Jianhuang Lai

by the proposed hierarchical transfer framework, to verify the effectiveness of
the proposed Dual-Codebook. In the second experiment, the Dual-Codebook is
implemented, but action videos are not segmented, i.e., only video-level transfer
is performed. The results are listed in Table 1.

target view

C1 C2 C3 C4 C5%

A B Ours A B Ours A B Ours A B Ours A B Ours

C1 89.9 74.0 99.0 92.2 77.3 99.2 86.1 69.7 98.2 91.2 76.0 98.7

C2 89.6 67.4 99.2 92.7 66.4 98.7 87.6 68.4 98.7 91.2 77.0 99.7

C3 91.2 78.5 98.7 88.6 73.7 97.7 92.7 74.7 98.7 93.4 82.6 99.0

C4 86.6 76.0 99.0 87.4 70.5 96.7 92.4 80.1 99.2 91.2 74.0 99.2

C5 88.4 79.8 99.5 88.6 78.0 98.5 94.7 87.9 99.0 88.9 77.8 98.0

Ave. 89.0 75.4 99.1 88.6 74.1 98.0 93.0 77.9 99.0 88.8 72.7 98.4 91.8 77.4 99.2

Table 1. The results of controlled experiments. Column A, B and “Ours” are the results 

of “k-means codebooks + hierarchical transfer framework”, “Dual-Codebook + 

video-level transfer” , and our method, respectively.

Comparing Column A to “Ours”, we can see that our method performs better
in all twenty pairwise view combinations. The average accuracy of our method
is about 8.5% higher than that using separate k-means codebooks instead. This
indicates that our Dual-Codebook is a better foundation than separate k-means
codebooks for transferring actions models across pairwise views. Moreover, com-
paring Column B to “Ours”, we can also see that our method performs better in
all twenty pairwise view combinations. The average accuracy of our method is
about 23.2% higher than that not splitting the action videos at all. This indicates
that the atom-level transfer in our hierarchical framework is more discriminative
than the usual video-level transfer in most existing work.

Additionally, in Table 2, we compare our method to three state-of-the-art
approaches for all twenty pairwise view combinations on the IXMAS dataset.
The size of Dual-Codebook is set to 500. As can be observed, our method has
obtained recognition rates of higher than 98% in eighteen pairwise view combina-
tions. Compared to the results of [20] and [34], our method performs better in all
twenty pairwise view combinations. Compared to [33], the proposed method ob-
tained higher recognition rates in fifteen pairwise view combinations. The reason
is that, the proposed Dual-Codebook contains codebook-to-codebook correspon-
dence across two views, while codebooks separately trained in each view cannot
guarantee the same level of correspondence. Moreover, the atom-level transfer s-
trategy in the hierarchical framework is more discriminative than the video-level
transfer in [33].
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Table 2. Performance comparison between our method and state-of-the-art approaches. 

target view

C1 C2 C3 C4 C5%

[33] [20] [34] Ours [33] [20] [34] Ours [33] [20] [34] Ours [33] [20] [34] Ours [33] [20] [34] Ours

C1 99.1 79.9 96.7 99.0 90.9 76.8 97.9 99.2 88.7 76.8 97.6 98.2 95.5 74.8 84.9 98.7

C2 97.8 81.2 97.3 99.2 91.2 75.8 96.4 98.7 78.4 78.0 89.7 98.7 88.4 70.4 81.2 99.7

C3 99.4 79.6 92.1 98.7 97.6 76.6 89.7 97.7 91.2 79.8 94.9 98.7 100.0 72.8 89.1 99.0

C4 87.6 73.0 97.0 99.0 98.2 74.1 94.2 96.7 99.4 74.4 96.7 99.2 95.4 66.9 83.9 99.2

C5 87.3 82.0 83.0 99.5 87.8 68.3 70.6 98.5 92.1 74.0 89.7 99.0 90.0 71.1 83.7 98.0

Ave. 93.0 79.0 92.4 99.1 95.6 74.7 87.8 98.0 93.4 75.2 95.1 99.0 87.1 76.4 91.2 98.4 95.1 71.2 84.8 99.2

In Table 2, the recognition rates of [20] and [34] dropped dramatically when
camera 5 was the source or target view. The reason might be that camera 5 is set
above the actors. The action observations obtained in this camera is dramatically
different from those in other cameras, which is very challenging. It is interesting
to note that the proposed method obtained high accuracies under camera 5. We
consider the reason is that, the key of our method is fully utilizing the information
of the categories and sequential composition of the atom actions within an action
during transfer, and this information is invariant to the viewpoint.

The average recognition accuracies of each action category for different tar-
get views are demonstrated in Fig. 2 (the size of Dual-Codebook is 500). We
can see that the action “get-up” gains 100% recognition accuracies in all five
target views. Besides, the action “kick” and “punch” achieve 100% recognition
accuracies in four target views, although they tend to be mistaken for each other
in some viewpoints. The recognition accuracies of the action “pick up” are rel-
atively low compared to other actions, but still higher than 85%. We find that
it is often mistaken for the action “sit-down”. The possible reason is that, the
observations of these two actions are extremely similar while seen in most of the
viewpoints, since they contain the similar atom-action sequences “stand-stoop-
squat” and “stand-stoop-sit”. And our hierarchical transfer framework relies on
the categories and sequential composition of atom actions, so it confuses “pick
up” with “sit-down” in some cases.

We also conduct experiments studying recognition performance under Dual-
Codebooks of different sizes. As shown in Fig. 3, in all source views, the recogni-
tion rates of our method increase quickly with the size of Dual-Codebook when
the size is under 250. When the codebook size is greater than 250, the recog-
nition rate curves tend to be flat. This indicates that, a larger Dual-Codebook
generally contains more accurate codebook-to-codebook correspondence across
two views and more discriminative information.
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Fig. 2. The recognition accuracy of each action category in different target views (best
viewed in PDF file).

5 Conclusion

In this paper, we explore the challenging cross-view action recognition problem.
For this purpose, we firstly propose a Dual-Codebook that achieves codebook-to-
codebook correspondence across different views. With the Dual-Codebook, each
action can be represented based on Bag-of-Dual-Codes (BoDC). We further in-
troduce a hierarchical transfer framework, which performs atom-level transfer
on multiple timescales. This framework guarantees that each pair of correspond-
ing video segments from pairwise views obtain similar sparse representations,
and achieves feature-to-feature correspondence at atom-level. This contributes
to a more accurate transfer relationship than the simple video-level transfer. At
last, we conduct a series of experiments on the IXMAS dataset. The experimen-
tal results demonstrate that our method can achieve superior performance over
state-of-the-art approaches.

Acknowledgement. This work is supported by National Natural Science Foun-
dation of China (No. 61172141), Key Projects in the National Science & Technol-
ogy Pillar Program during the 12th Five-Year Plan Period (No. 2012BAK16B06),
and Science and Technology Program of Guangzhou, China (2014J4100092).

References

1. Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Computing
Surveys 43 (2011)

2. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation. TSP 54 (2006) 4311–4322

3. Cheung, G., Baker, S., Kanade, T.: Shape-from-silhouette of articulated objects
and its use for human body kinematics estimation and motion capture. In: CVPR.
(2003)



Cross-view Action Recognition via Dual-Codebook and Hierarchical Transfer 13

0

0.2

0.4

0.6

0.8

1

50 100 250 500

R
e

co
g

n
it

io
n

 R
a

te

Size of Dual-Codebook 

source view = C1

target view = C2

target view = C3

target view = C4

target view = C5

0

0.2

0.4

0.6

0.8

1

50 100 250 500

R
e

co
g

n
it

io
n

 R
a

te

Size of Dual-Codebook

source view = C2

target view = C1

target view = C3

target view = C4

target view = C5

0

0.2

0.4

0.6

0.8

1

50 100 250 500

R
e

co
g

n
it

io
n

 R
a

te
 

Size of Dual-Codebook 

source view = C3

target view = C1

target view = C2

target view = C4

target view = C5

0

0.2

0.4

0.6

0.8

1

50 100 250 500

R
e

co
g

n
it

io
n

 R
a

te
 

Size of Dual-Codebook 

source view = C4

target view = C1

target view = C2

target view = C3

target view = C5

0

0.2

0.4

0.6

0.8

1

50 100 250 500

R
e

co
g

n
it

io
n

 R
a

te
 

Size of Dual-Codebook

source view = C5

target view = C1

target view = C2

target view = C3

target view = C4

Fig. 3. Recognition performance under different size of Dual-Codebook (best viewed
in PDF file).

4. Ding, C., Li, T.: Convex and semi-nonnegative matrix factorizations. PAMI 32
(2010) 45-55

5. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse
spatio-temporal features. In: VS-PETS. (2005)

6. Efros, A., Berg, A., Mori, G., Malik, J.: Recognizing action at a distance. In:
ICCV. (2003)

7. Farhadi, A., Tabrizi, M.: Learning to recognize activities from the wrong view
point. In: ECCV. (2008)

8. Farhadi, A., Tabrizi, M., Endres, I., Forsyth, D.: A latent model of discriminative
aspect. In: ICCV. (2009)

9. Gavrila, D., Davis, L.S.: 3D model-based tracking of humans in action: a multi-view
approach. In: CVPR. (1996)

10. Holte, M.B., Moeslund, T.B., Tran, C., Trivedi, M.: Human action recognition us-
ing multiple views: a comparative perspective on recent developments. In: HGBU.
(2011)



14 Chengkun Zhang, Huicheng Zheng, Jianhuang Lai

11. Ji, X., Liu, H.: Advances in view-invariant human motion analysis: a review.
TCSVT 40 (2010) 13–24

12. Junejo, I., Dexter, E., Laptev, I., Patrick, P.: View-independent action recognition
from temporal self-similarities. PAMI 33 (2011) 172–185

13. Junejo, I., Dexter, E., Laptev, I., Perez, P.: Cross-view action recognition from
temporal self-similarities. In: ECCV. (2008)

14. Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV. (2003)
15. Lee, D., Seung, H.: Algorithms for non-negative matrix factorization. Advances in

Neural Information Processing Systems 13. Cambridge, MA: MIT Press (2001)
16. Li, R., Zickler, T.: Discriminative virtual views for cross-view action recognition.

In: CVPR. (2012)
17. Lin, Z., Jiang, Z., Davis, L.: Recognizing actions by shape-motion prototype trees.

In: ICCV. (2009)
18. Liu, J., Ali, S., Shah, M.: Recognizing human actions using multiple features. In:

CVPR. (2008)
19. Liu, J., Shah, M.: Learning human actions via information maximization. In:

CVPR. (2008)
20. Liu, J., Shah, M., Kuipers, B., Savarese, S.: Cross-view action recognition via view

knowledge transfer. In: CVPR. (2011)
21. Lv, F., Nevatia, R.: Single view human action recognition using key pose matching

and viterbi path searching. In: CVPR. (2007)
22. Paramesmaran, V. Chellappa, R.: View invariance for human action recognition.

IJCV 66 (2006) 83–101
23. Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of

actions. IJCV 50 (2002) 203–226
24. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal

matching pursuit. TIT 53 (2007) 4655-4666
25. Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of

human activities: a survey. TCSVT 18 (2008) 1473–1488
26. Valera, M., Velastin, S.: Intelligent distributed surveillance systems: a review. VISP

152 (2005) 192–204
27. Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views

using 3D examplars. In: ICCV. (2007)
28. Weinland, D., Ozuysal, M., Fua, P.: Making action recognition robust to occlusions

and viewpoint changes. In: ECCV. (2010)
29. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via

sparse representation. PAMI 31 (2009) 210–227
30. Yan, P., Khan, S.M., Shah, M.: Learning 4D action feature models for arbitrary

view action recognition. In: CVPR. (2008)
31. Yilmaz, A., Shah, M.: Actions sketch: A novel action representation. In: CVPR.

(2005)
32. Zhang, Z., Wang, Y., Zhang, Z.: Face synthesis from near-infrared to visual light

via sparse representation. In: IJCB. (2011)
33. Zheng, J., Jiang, Z.: Learning view-invariant sparse representations for cross-view

action recognition. In: ICCV. (2013)
34. Zheng, J., Jiang, Z., Phillips, P., Chellappa, R.: Cross-view action recognition via

a transferable dictionary pair. In: BMVC. (2012)


